Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 24(7): 176, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29943199

RESUMO

Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.


Assuntos
DNA Helicases/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , DNA Helicases/genética , DNA Helicases/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Ativação Enzimática , Hidrólise , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/química , Mutação , Análise de Componente Principal , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
2.
BMC Biol ; 15(1): 90, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969641

RESUMO

BACKGROUND: Proper DNA replication is essential for faithful transmission of the genome. However, replication stress has serious impact on the integrity of the cell, leading to stalling or collapse of replication forks, and has been determined as a driving force of carcinogenesis. Mus81-Mms4 complex is a structure-specific endonuclease previously shown to be involved in processing of aberrant replication intermediates and promotes POLD3-dependent DNA synthesis via break-induced replication. However, how replication components might be involved in this process is not known. RESULTS: Herein, we show the interaction and robust stimulation of Mus81-Mms4 nuclease activity by heteropentameric replication factor C (RFC) complex, the processivity factor of replicative DNA polymerases that is responsible for loading of proliferating cell nuclear antigen (PCNA) during DNA replication and repair. This stimulation is enhanced by RFC-dependent ATP hydrolysis and by PCNA loading on the DNA. Moreover, this stimulation is not specific to Rfc1, the largest of subunit of this complex, thus indicating that alternative clamp loaders may also play a role in the stimulation. We also observed a targeting of Mus81 by RFC to the nick-containing DNA substrate and we provide further evidence that indicates cooperation between Mus81 and the RFC complex in the repair of DNA lesions generated by various DNA-damaging agents. CONCLUSIONS: Identification of new interacting partners and modulators of Mus81-Mms4 nuclease, RFC, and PCNA imply the cooperation of these factors in resolution of stalled replication forks and branched DNA structures emanating from the restarted replication forks under conditions of replication stress.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/genética , Antígeno Nuclear de Célula em Proliferação/genética , Proteína de Replicação C/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Genes Dev ; 29(19): 2067-80, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443850

RESUMO

Accurate completion of replication relies on the ability of cells to activate error-free recombination-mediated DNA damage bypass at sites of perturbed replication. However, as anti-recombinase activities are also recruited to replication forks, how recombination-mediated damage bypass is enabled at replication stress sites remained puzzling. Here we uncovered that the conserved SUMO-like domain-containing Saccharomyces cerevisiae protein Esc2 facilitates recombination-mediated DNA damage tolerance by allowing optimal recruitment of the Rad51 recombinase specifically at sites of perturbed replication. Mechanistically, Esc2 binds stalled replication forks and counteracts the anti-recombinase Srs2 helicase via a two-faceted mechanism involving chromatin recruitment and turnover of Srs2. Importantly, point mutations in the SUMO-like domains of Esc2 that reduce its interaction with Srs2 cause suboptimal levels of Rad51 recruitment at damaged replication forks. In conclusion, our results reveal how recombination-mediated DNA damage tolerance is locally enabled at sites of replication stress and globally prevented at undamaged replicating chromosomes.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Proteínas Nucleares/metabolismo , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular , Cromatina/metabolismo , Dano ao DNA/genética , DNA Helicases/metabolismo , Proteínas Nucleares/genética , Mutação Puntual , Ligação Proteica , Rad51 Recombinase/metabolismo
4.
Nucleic Acids Res ; 43(7): 3626-42, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25765656

RESUMO

A variety of DNA lesions, secondary DNA structures or topological stress within the DNA template may lead to stalling of the replication fork. Recovery of such forks is essential for the maintenance of genomic stability. The structure-specific endonuclease Mus81-Mms4 has been implicated in processing DNA intermediates that arise from collapsed forks and homologous recombination. According to previous genetic studies, the Srs2 helicase may play a role in the repair of double-strand breaks and ssDNA gaps together with Mus81-Mms4. In this study, we show that the Srs2 and Mus81-Mms4 proteins physically interact in vitro and in vivo and we map the interaction domains within the Srs2 and Mus81 proteins. Further, we show that Srs2 plays a dual role in the stimulation of the Mus81-Mms4 nuclease activity on a variety of DNA substrates. First, Srs2 directly stimulates Mus81-Mms4 nuclease activity independent of its helicase activity. Second, Srs2 removes Rad51 from DNA to allow access of Mus81-Mms4 to cleave DNA. Concomitantly, Mus81-Mms4 inhibits the helicase activity of Srs2. Taken together, our data point to a coordinated role of Mus81-Mms4 and Srs2 in processing of recombination as well as replication intermediates.


Assuntos
DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Endonucleases Flap/fisiologia , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Primers do DNA , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Técnicas do Sistema de Duplo-Híbrido
5.
PLoS One ; 8(12): e82630, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376557

RESUMO

Rad54 is an ATP-driven translocase involved in the genome maintenance pathway of homologous recombination (HR). Although its activity has been implicated in several steps of HR, its exact role(s) at each step are still not fully understood. We have identified a new interaction between Rad54 and the replicative DNA clamp, proliferating cell nuclear antigen (PCNA). This interaction was only mildly weakened by the mutation of two key hydrophobic residues in the highly-conserved PCNA interaction motif (PIP-box) of Rad54 (Rad54-AA). Intriguingly, the rad54-AA mutant cells displayed sensitivity to DNA damage and showed HR defects similar to the null mutant, despite retaining its ability to interact with HR proteins and to be recruited to HR foci in vivo. We therefore surmised that the PCNA interaction might be impaired in vivo and was unable to promote repair synthesis during HR. Indeed, the Rad54-AA mutant was defective in primer extension at the MAT locus as well as in vitro, but additional biochemical analysis revealed that this mutant also had diminished ATPase activity and an inability to promote D-loop formation. Further mutational analysis of the putative PIP-box uncovered that other phenotypically relevant mutants in this domain also resulted in a loss of ATPase activity. Therefore, we have found that although Rad54 interacts with PCNA, the PIP-box motif likely plays only a minor role in stabilizing the PCNA interaction, and rather, this conserved domain is probably an extension of the ATPase domain III.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Pareamento Cromossômico , Sequência Conservada , DNA/metabolismo , Dano ao DNA , Análise Mutacional de DNA , Primers do DNA/metabolismo , Instabilidade Genômica , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
6.
EMBO J ; 32(5): 742-55, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23395907

RESUMO

Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA/genética , Recombinação Homóloga , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Reparo do DNA/efeitos da radiação , Replicação do DNA/genética , Replicação do DNA/efeitos da radiação , Instabilidade Genômica , Mutação/genética , Antígeno Nuclear de Célula em Proliferação/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína SUMO-1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação , Raios Ultravioleta/efeitos adversos
7.
J Biol Chem ; 284(12): 7733-45, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19129197

RESUMO

The Saccharomyces cerevisiae Mus81.Mms4 protein complex, a DNA structure-specific endonuclease, helps preserve genomic integrity by resolving pathological DNA structures that arise from damaged or aborted replication forks and may also play a role in the resolution of DNA intermediates arising through homologous recombination. Previous yeast two-hybrid studies have found an interaction of the Mus81 protein with Rad54, a Swi2/Snf2-like factor that serves multiple roles in homologous recombination processes. However, the functional significance of this novel interaction remains unknown. Here, using highly purified S. cerevisiae proteins, we show that Rad54 strongly stimulates the Mus81.Mms4 nuclease activity on a broad range of DNA substrates. This nuclease enhancement does not require ATP binding nor its hydrolysis by Rad54. We present evidence that Rad54 acts by targeting the Mus81.Mms4 complex to its DNA substrates. In addition, we demonstrate that the Rad54-mediated enhancement of the Mus81.Mms4 (Eme1) nuclease function is evolutionarily conserved. We propose that Mus81.Mms4 together with Rad54 efficiently process perturbed replication forks to promote recovery and may constitute an alternative mechanism to the resolution/dissolution of the recombination intermediates by Sgs1.Top3. These findings provide functional insights into the biological importance of the higher order complex of Mus81.Mms4 or its orthologue with Rad54.


Assuntos
Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Recombinação Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transativadores/metabolismo , Adenosina Trifosfatases , DNA Helicases , Enzimas Reparadoras do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap , Genoma Fúngico/fisiologia , Instabilidade Genômica/fisiologia , Complexos Multienzimáticos/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...